Select the test references that you would like to view.

Preparent Carrier Screen - CF
  1. Abeliovich et al. (1992). Screening for five mutations detects 97% of cystic fibrosis chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population. Am J Hum Genet, 51:951-956.
  2. American College of Obstetricians and Gynecologists, Committee on Genetics (2011). Committee Opinion Number 486. Update on Carrier Screening for Cystic Fibrosis. Obstetrics and Gynecology, 117(4):1028-1031.
  3. Augarten et al. (2008). The changing face of the exocrine pancreas in cystic fibrosis: the correlation between pancreatic status, pancreatitis and cystic fibrosis genotype. Eur J Gastro Hepatology, 20(3):164-168.
  4. Braekeleer and Ferec (1996). Mutations in the cystic fibrosis gene in men with congenital bilateral absence of the vas deferens. Mol Hum Reprod, 2(9):669-677.
  5. Bobadilla et al. (2002). Cystic Fibrosis: A Worldwide Analysis of CFTR Mutations--Correlation with Incidence Data and Application to Screening. Human Mutation, 19:575-606.
  6. Castellani et al. (2008). Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cystic Fibrosis, 7:179-196.
  7. Casals et al. (2000). Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility. Human Reproduction, 15(17):1476-1483.
  8. Centers for Disease Control and Prevention. Population-Based Prenatal Screening for Cystic Fibrosis via Carrier Testing.
  9. Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. Cystic Fibrosis mutations database.
  10. Estivill et al. (1997). Geographic Distribution and Regional Origin of 272 Cystic Fibrosis Mutations in European Populations. Human Mutation, 10:135-154.
  11. Ferec et al. (1995). Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses. Human Genetics, 96:542-548.
  12. Feuillet-Fieux et al. (2004). Novel CFTR mutations in black cystic fibrosis patients. Clin Genetics, 65(4):284-287.
  13. Grebe et al. (1994). Genetic Analysis of Hispanic Individuals with Cystic Fibrosis. Am J Hum Genet, 54:443-446.
  14. Goetzinger and Cahill (2010). An Update on Cystic Fibrosis Screening. Clin Lab Med, 30:533-543.
  15. Grody et al. (2001). Laboratory standards and guidelines for population-based cystic fibrosis carrier screening, ACMG policy statement. Genet Med, 3(2):149-154.
  16. Heim et al. (2001). Improved detection of cystic fibrosis mutations in the heterogeneous U.S. population using an expanded, pan-ethnic mutation panel. Genet Med, 3(3):168-176.
  17. Kazazian, Haig (1994). Population Variation of Common Cystic Fibrosis Mutations. Human Genetics, 4:167-177.
  18. Leeds Method of Management. (2008). The genetics of Cystic Fibrosis [online]. Leeds Regional Adult and Paediatric Cystic Fibrosis Units, St James's University Hospital, Leeds, UK. Available from
  19. Macek et al. (1997). Identification of Common Cystic Fibrosis Mutations in African-Americans with Cystic Fibrosis Increases the Detection Rate to 75%. Am J Hum Genet, 60:1122-1127.
  20. Monaghan et al (2004). Preconception and prenatal cystic fibrosis carrier screening of African American reveals unanticipated frequencies for specific mutations. Genet Med 6(3):141-144.
  21. Morea et al. (2005). Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility. Mol Hum Reprod, 8:607-614.
  22. Palomaki et al. (2002). Updated assessment of cystic fibrosis mutation frequencies in non-Hispanic Caucasians. Genet Med, 4(2):90-94.
  23. Palomaki et al. (2004). Clinical sensitivity of prenatal screening for cystic fibrosis via CFTR carrier testing in a United States panethnic population. Genet Med, 6(5):405-414.
  24. Perez et al. (2007). CFTR gene analysis in Latin American CF patients: Heterogeneous origin and distribution of mutations across the continent. J Cystic Fibrosis, 6:194-208.
  25. Rohlfs et al. (2011). Cystic Fibrosis Carrier Testing in an Ethnically Diverse US Population. Clin Chem, 57(6):841-848.
  26. Schwartz et al. (1996). Cystic Fibrosis Mutation Analysis: Report from 22 UK Regional Genetics Laboratories. Human Mutation, 3:326-333.
  27. Scotet et al. (2000). Neonatal screening for cystic fibrosis in Brittany, France: assessment of 10 years' experience and impact on prenatal diagnosis. Lancet, 356:789-794.
  28. Sugarman et al. (2004). CFTR mutation distribution among U.S. Hispanic and African American individuals: Evaluation in cystic fibrosis patient and carrier screening populations. Genet Med, 6(5):392-399.
  29. Watson et al. (2004). Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel. Genet Med, 6(5):387-391.
  30. World Health Organization (WHO) (2002). The Molecular Genetic Epidemiology of Cystic Fibrosis. Report of a joint meeting of WHO/ECFTN/ICF(M)A/ECFS.
Preparent Carrier Screen - SMA
  1. Cusin et al. (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counseling. J Med Genet, 40:e39.
  2. Dressman et al. (2007). X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping. Genet Med, 9(1):52-60.
  3. Guenther er al. (2007). Clinical and mutational profile in spinal muscular atrophy with respiratory distress (SMARD): defining novel phenotypes through hierarchical cluster analysis. Hum Mutat, 28(8):808-815.
  4. Hendrickson et al. (2009). Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet, 46(9): 641-644.
  5. Iannaccone et al (2004). Spinal muscular atrophy. Curr Neurol Neurosci Rep, 4(1):74-80.
  6. Kaindl et al. (2008). Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J Child Neurol, 3(2):199-204.
  7. Kolb et al. (2007). Molecular functions of the SMN complex. J Child Neurol, 22(8):990-994.
  8. Lefebvre et al. (1995). Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene. Cell, 80:155-165.
  9. Lunn and Wang (2008). Spinal Muscular Atrophy. Lancet, 371: 2120:2133.
  10. Mailman et al. (2002). Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med, 4(1):20-26.
  11. Marques et al. (2006). Expanding the phenotypes of the Pro56Ser VAPB mutation: proximal SMA with dysautonomia. Muscle Nerve, 34(6):731-739.
  12. Monani (2005). Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 48(6):885-896.
  13. Nishimura et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet, 75(5):822-831.
  14. Ogino and Wilson (2002). Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum Genet, 111(6):477-500.
  15. Ogino and Wilson (2004). Spinal muscular atrophy: molecular genetics and diagnostics. Expert Rev Mol Diagn, 4(1): 15-29.
  16. Prior et al. (2004). Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A, 130(3):307-310.
  17. Prior (2007). Spinal muscular atrophy diagnostics. J Child Neurol, 22(8):952-956.
  18. Prior (2008). Carrier screening for spinal muscular atrophy. Genet Med, 10:840-842.
  19. Ramser et al. (2008). Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet, 82(1):188-193.
  20. Smith et al. (2007). Population screening and cascade testing for carriers of SMA. Eur J Hum Genet, 15: 759-766.
  21. Swoboda et al. (2005). Natural History of Denervation in SMA: Relation to Age, SMN2 Copy Number, and Function. Ann Neurology, 57(5) 704-712.
  22. Sumner (2007). Molecular mechanisms of spinal muscular atrophy. J Child Neurol, (8):979-989.
  23. Wirth et al (2006). Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet, 119(4):422-428.
Preparent Carrier Screen - Fragile X syndrome
  1. Chen et al. (2010). An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for Southern blot analysis. J Mol Diagn, 12:589-600.
  2. Cornish et al. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: a developmental neuropsychological approach. J Child Psychol Psychiatry, 45(6):1042-1053.
  3. Cronister et al. (2008). Prevalence and instability of fragile X alleles: implications for offering fragile X prenatal diagnosis. Obstet Gynecol, 111:596-601.
  4. Eichler et al. (1994). Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet, 8:88-94.
  5. Fernandez-Carvajal et al. (2009). Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J Mol Diagn, 11:306-1310.
  6. Hagerman et al. (2002). Fragile X syndrome : Diagnosis, treatment, and research; 3rd ed.; Baltimore : Johns Hopkins University Press.
  7. Hagerman and Hagerman (2004). The fragile-X premutation: a maturing perspective. Am J Hum Genet, 74(5):805-16. Epub 2004 Mar 29. Review. Erratum in: Am J Hum Genet. 2004 Aug;75(2):352.
  8. Hagerman (2006). Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr, 27(1):63-74.
  9. Hantash et al. (2011). FMR1 premutation carrier frequency in patients undergoing routine population-based carrier screening: insights into the prevalence of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in the United States. Genet Med, 13:39-45.
  10. Jacquemont et al. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol, 6(1):45-55.
  11. Koukoui and Chaudhuri (2007). Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome. Brain Res Rev, 53(1):27-38.
  12. Nolin et al. (2003). Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. J Hum Genet, 2003, 72:454-464.
  13. Sherman et al. (2005). Fragile X syndrome: diagnostic and carrier testing. Genet Med, 7(8):584-587.
  14. Strom et al. (2007). Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med, 9:46-51.
  15. Terracciano et al. (2005). Fragile X syndrome. Am J Med Genet C Semin Med Genet, 15;137(1):32-37.
  16. Van Esch (2006). The Fragile X premutation: new insights and clinical consequences. Eur J Med Genet, 49(1):1-8.
  17. Willemsen et al. (2004). The fragile X syndrome: from molecular genetics to neurobiology. Ment Retard Dev Disabil Res Rev, 10(1):60-67.
Preparent Carrier Screen - Ashkenazi Jewish Panel
  1. Ambrus A et al. (2009). Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. J. Neurochem. 109 Suppl (1):222-229.
  2. Cerna et al. (2001). Novel mutations in a boy with dihydrolipoamide dehydrogenase deficiency. Med Sci Monit, 7(6):1319-1325.
  3. Feigenbaum and Robinson (1993). The structure of the human dihydrolipoamide dehydrogenase gene (DLD) and its upstream elements. Genomics, 17(2):376-381.
  4. Matalon R et al. (1984). Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid. J. Pediatr. 104(1):65-69.
  5. Sansaricq C et al. (2006). Biochemical and molecular diagnosis of lipoamide dehydrogenase deficiency in a North American Ashkenazi Jewish family. J. Inherit. Metab. Dis. 29(1):203-204.
  6. Scott SA et al. (2010). Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Hum. Mutat. 31(11):1240-1250.
  7. Shaag et al. (1999). Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet. 82(2):177-182.
  8. Chou et al. (2010). Neutropenia in type 1b glycogen storage disease. Curr Opin Hematol, 17(1):36-42.
  9. Chou et al. (2008). Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. Hum Mutat, 29(7):921-930.
  10. Ekstein et al. (2004). Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am J Med Genet, 129A(2):162-164.
  11. Matern et al. (2002). Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr, 161 Suppl 1:S10-S19.
  12. Melis et al. (2005). Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr, 164(8):501-508.
  13. Parvari et al. (1997). Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies. Am. J. Med. Genet , 72: 286-290.
  14. Chuang DT, Chuang JL, Wynn RM. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006 Jan;136(1 Suppl):243S-9S.
  15. Love-Gregory, LD et al. (2002) Molec Genet Metab 75:1,2002
  16. Mitsubuchi H, Owada M, Endo F. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J Nutr. 2005 Jun;135(6 Suppl):1565S-70S.
  17. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002 Jun;109(6):999-1008.
  18. Puffenberger EG. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet. 2003 Aug 15;121C(1):18-31.
  19. Simon E, Flaschker N, Schadewaldt P, Langenbeck U, Wendel U. Variant maple syrup urine disease (MSUD)--the entire spectrum. J Inherit Metab Dis. 2006 Dec;29(6):716-24. Epub 2006 Oct 25.
  20. Huopio et al. (2002). K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab, 283(2):E207-E216.
  21. James et al. (2009). The genetic basis of congenital hyperinsulinism. J Med Gene, 46(5):289-299.
  22. Meissner et al. (2003). Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol, 149(1):43-51.
  23. Nestorowicz et al. (1996). Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet, 5(11): 1813-1822.
  24. Pinney et al. (2008). Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest, 118(8):2877-2886.
  25. Sandal et al. (2009). The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy. Clin Genet, 75(5):440-448.
  26. Chuang DT, Chuang JL, Wynn RM. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006 Jan;136(1 Suppl):243S-9S.
  27. Love-Gregory, LD et al. (2002) Molec Genet Metab 75:1,2002
  28. Mitsubuchi H, Owada M, Endo F. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J Nutr. 2005 Jun;135(6 Suppl):1565S-70S.
  29. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002 Jun;109(6):999-1008.
  30. Puffenberger EG. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet. 2003 Aug 15;121C(1):18-31.
  31. Simon E, Flaschker N, Schadewaldt P, Langenbeck U, Wendel U. Variant maple syrup urine disease (MSUD)--the entire spectrum. J Inherit Metab Dis. 2006 Dec;29(6):716-24. Epub 2006 Oct 25.
  32. Beltran-Valero et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet, 71 (5):1033-1043.
  33. Chung et al. (2009). Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn, 29:560-569.
  34. Cotarelo et al. (2008). Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg Syndrome. Clin Genet, 73:139-145.
  35. Vajsar and Schachter (2006). Walker-Warburg syndrome. Orphanet Journal of Rare Diseases, 1:29-29.
  36. Walker (1942). Lissencephaly. Archives of Neurology and Psychiatry, 48: 13-29.
  37. Warburg (1971). The heterogeneity of microphthalmia in the mentally retarded. Birth Defects Orig Artic Ser, 7(3):136-154.
  38. Edvardson et al. (2010). Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am J Hum Genet, 86:93-97.
  39. Brancati et al. (2010). Joubert Syndrome and related disorders. Orphanet J Rare Dis, 8 (5): 20-29.
  40. Doherty (2009). Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol, 16(3):143-154.
  41. Maria BL et al. (1999). Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol, 14(6):368-376.
  42. Parisi (2009). Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet, 15;151C(4):326-340.
  43. Valente et al (2008). Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet, 51(1):1-23.
  44. Anderson et al. (2004). Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet, 115: 185-190.
  45. Ilkovski et al. (2005). Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord, 15(12):829-835.
  46. Lehtokari et al. (2006). Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat, 27(9):946-56.
  47. Nowak et al. (2007). Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol, 61(2):175-184.
  48. Ottenheijm et al. (2010). Altered myofilament function depresses force generation in patients with nebulin-based nemaline myopathy (NEM2). J Struct Biol, 170(2):334-343.
  49. Ryan et al. (2001). Nemaline myopathy: a clinical study of 143 cases. Ann Neurol, 50(3):312-320.
  50. Wallefeld et al. (2006). Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord, 16(9-10):541-547.
  51. Youssef et al. (2009). Nemaline myopathy: clinical, histochemical and immunohistochemical features. Arq Neuropsiquiatr, 67(3B):886-891.
  52. Adato et al. (2002). USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur J Hum Genet, 10(6):339-350.
  53. Ahmed et al (2003). The molecular genetics of Usher syndrome. Clin Genet, 63(6):431-444.
  54. Astuto et al. (2000). Genetic heterogeneity of Usher syndrome: analysis of 151 families with Usher type I. Am J Hum Genet, 67(6):1569-1574.
  55. Ben-Yosef et al. (2001). A mutation of PCDH15 among Ashkenazi Jews with the type 1 Usher syndrome. NEJM, 348: 1664-1670.
  56. Boeda et al. (2002). Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J, 21(24):6689-6699.
  57. Eudy and Sumegi (1999). Molecular genetics of Usher syndrome. Cell Mol Life Sci, 15;56(3-4):258-267.
  58. Friedman et al. (2005). Usher syndrome type 1: genotype-phenotype relationships. Retina, 25(8 Suppl):S40-S42.
  59. Hmani-Aifa et al. (2002). Distinctive audiometric features between USH2A and USH2B subtypes of Usher syndrome. J Med Genet, 39(4):281-283.
  60. Keats and Savas (2004). Genetic heterogeneity in Usher syndrome. Am J Med Genet A, 130(1):13-16.
  61. Leroy et al (2001). Spectrum of mutations in USH2A in British patients with Usher syndrome type II. Exp Eye Res, 72(5):503-509.
  62. Ness et al. (2003). Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet, 40: 767-772.
  63. Pennings et al. (2003). Usher syndrome type III can mimic other types of Usher syndrome. Ann Otol Rhinol Laryngol 112(6):525-530.
  64. Petit C (2001). Usher syndrome: from genetics to pathogenesis. Annu Rev Genomics Hum Genet, 2:271-297.
  65. Reiners et al (2006). Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res, 83(1):97-119.
  66. Reisser et al (2002). Hearing loss in Usher syndrome type II is nonprogressive. Ann Otol Rhinol Laryngol, 111(12 Pt 1):1108-1111.
  67. Seeliger et al (1999). Comparative study of visual, auditory, and olfactory function in Usher syndrome. Graefes Arch Clin Exp Ophthalmol, 237(4):301-307.
  68. Weston et al. (2000). Genomic structure and identification of novel mutations in usherin, the gene responsible for Usher syndrome type IIa. Am J Hum Genet, 66(4):1199-1210.
  69. Committee on Genetics, American College of Obstetricians and Gynecologists (2009). Preconception and prenatal carrier screening for genetic diseases in individuals of Eastern European Jewish descent. Obstetrics and Gynecology, 114(4): 950-953.
  70. Committee on Genetics, American College of Obstetricians and Gynecologists (2005, reaffirmed 2007). Screening for Tay-Sachs disease. Obstetrics and Gynecology, 106(4):893-894.
  71. Cunningham, et al (2010). Prenatal diagnosis and fetal therapy. In Williams Obstetrics, 23rd ed, New York: McGraw-Hill Medical; chap 13:287-311.
  72. Gross, (2008). Carrier screening individuals of Ashkenazi Jewish descent. Genet Med, 10(1):54-56.
  73. Monaghan, et al (2008). Technical standards and guidelines for reproductive screening in the Ashkenazi Jewish population. Genet Med, 10(1):57-72.
  74. Schneider, et al (2009). Population-based Tay-Sachs screening among Ashkenazi Jewish young adults in the 21st Century: Hexosaminidase A enzyme assay is essential for accurate testing. Am J Med Genet, Part A 149A:2444-2447.
  75. Scott, et al (2010). Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Human Mutation, 31(11): 1240-1250.
  76. Myerowitz, R. (1997). Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation 9:195-208.
  77. Gravel, et al (2001). The GM2 gangliosidosis. In The Metabolic and Molecular Bases of Inherited Disease. 8th edition. New York, McGraw-Hill Book Company, pp 3827-3876.
  78. Kaback (2000). Population-based genetics screening for reproductive counseling: the Tay-Sachs experience. Eur J Pediatr, 159:192-195.
  79. Kaback, et al (1993). Tay-Sachs Disease-- Carrier Screening, Prenatal Diagnosis, and the Molecular Era: An International Perspective, 1970 to 1993. JAMA, 270:2307-2315.
  80. Sutton (2002). Tay-Sachs disease screening and counseling families at risk for metabolic disease. Obstet Gynecol Clin North Am, 29(2):287-296.
Factor II Prothrombin
  1. American College of Obstetricians and Gynecologists. Practice Bulletin No.138: Inherited thrombophilias in pregnancy. 2013.
  2. Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO; American College of Chest Physicians. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. 2012.
  3. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: routine testing for Factor V Leiden (R506Q) and prothrombin (20210G>A) mutations in adults with a history of idiopathic VTE and their adult family members. 2011.
  4. National Clinical Guideline Centre. Venous Thromboembolic Diseases: The Management of Venous Thromboembolic Diseases and the Role of Thrombophilia Testing. National Institute for Health and Care Excellence Clinical Guidelines. 2012.
Factor V Leiden Thrombophilia
  1. Thrombophilia, Online Mendelian Inheritance in Man (OMIM).
  2. Calderwood CJ, Greer IA; The role of factor V Leiden in maternal health and the outcome of pregnancy. Curr Drug Targets. 2005 Aug;6(5):567-76.
  3. Ehrenforth S, Nemes L, Mannhalter C, et al; Impact of environmental and hereditary risk factors on the clinical manifestation of thrombophilia in homozygous carriers of factor V:G1691A. J Thromb Haemot. 2004 Mar; 2(3):430-6.