Select the test references that you would like to view.

38
Preparent Carrier Screen - CF
  1. Abeliovich et al. (1992). Screening for five mutations detects 97% of cystic fibrosis chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population. Am J Hum Genet, 51:951-956.
  2. American College of Obstetricians and Gynecologists, Committee on Genetics (2011). Committee Opinion Number 486. Update on Carrier Screening for Cystic Fibrosis. Obstetrics and Gynecology, 117(4):1028-1031.
  3. Augarten et al. (2008). The changing face of the exocrine pancreas in cystic fibrosis: the correlation between pancreatic status, pancreatitis and cystic fibrosis genotype. Eur J Gastro Hepatology, 20(3):164-168.
  4. Braekeleer and Ferec (1996). Mutations in the cystic fibrosis gene in men with congenital bilateral absence of the vas deferens. Mol Hum Reprod, 2(9):669-677.
  5. Bobadilla et al. (2002). Cystic Fibrosis: A Worldwide Analysis of CFTR Mutations--Correlation with Incidence Data and Application to Screening. Human Mutation, 19:575-606.
  6. Castellani et al. (2008). Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cystic Fibrosis, 7:179-196.
  7. Casals et al. (2000). Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility. Human Reproduction, 15(17):1476-1483.
  8. Centers for Disease Control and Prevention. Population-Based Prenatal Screening for Cystic Fibrosis via Carrier Testing. http://www.cdc.gov/genomics/gtesting/file/print/FBR/introduction.pdf.
  9. Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. Cystic Fibrosis mutations database. http://www.genet.sickkids.on.ca/cftr.
  10. Estivill et al. (1997). Geographic Distribution and Regional Origin of 272 Cystic Fibrosis Mutations in European Populations. Human Mutation, 10:135-154.
  11. Ferec et al. (1995). Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses. Human Genetics, 96:542-548.
  12. Feuillet-Fieux et al. (2004). Novel CFTR mutations in black cystic fibrosis patients. Clin Genetics, 65(4):284-287.
  13. Grebe et al. (1994). Genetic Analysis of Hispanic Individuals with Cystic Fibrosis. Am J Hum Genet, 54:443-446.
  14. Goetzinger and Cahill (2010). An Update on Cystic Fibrosis Screening. Clin Lab Med, 30:533-543.
  15. Grody et al. (2001). Laboratory standards and guidelines for population-based cystic fibrosis carrier screening, ACMG policy statement. Genet Med, 3(2):149-154.
  16. Heim et al. (2001). Improved detection of cystic fibrosis mutations in the heterogeneous U.S. population using an expanded, pan-ethnic mutation panel. Genet Med, 3(3):168-176.
  17. Kazazian, Haig (1994). Population Variation of Common Cystic Fibrosis Mutations. Human Genetics, 4:167-177.
  18. Leeds Method of Management. (2008). The genetics of Cystic Fibrosis [online]. Leeds Regional Adult and Paediatric Cystic Fibrosis Units, St James's University Hospital, Leeds, UK. Available from http://www.cysticfibrosismedicine.com.
  19. Macek et al. (1997). Identification of Common Cystic Fibrosis Mutations in African-Americans with Cystic Fibrosis Increases the Detection Rate to 75%. Am J Hum Genet, 60:1122-1127.
  20. Monaghan et al (2004). Preconception and prenatal cystic fibrosis carrier screening of African American reveals unanticipated frequencies for specific mutations. Genet Med 6(3):141-144.
  21. Morea et al. (2005). Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility. Mol Hum Reprod, 8:607-614.
  22. Palomaki et al. (2002). Updated assessment of cystic fibrosis mutation frequencies in non-Hispanic Caucasians. Genet Med, 4(2):90-94.
  23. Palomaki et al. (2004). Clinical sensitivity of prenatal screening for cystic fibrosis via CFTR carrier testing in a United States panethnic population. Genet Med, 6(5):405-414.
  24. Perez et al. (2007). CFTR gene analysis in Latin American CF patients: Heterogeneous origin and distribution of mutations across the continent. J Cystic Fibrosis, 6:194-208.
  25. Rohlfs et al. (2011). Cystic Fibrosis Carrier Testing in an Ethnically Diverse US Population. Clin Chem, 57(6):841-848.
  26. Schwartz et al. (1996). Cystic Fibrosis Mutation Analysis: Report from 22 UK Regional Genetics Laboratories. Human Mutation, 3:326-333.
  27. Scotet et al. (2000). Neonatal screening for cystic fibrosis in Brittany, France: assessment of 10 years' experience and impact on prenatal diagnosis. Lancet, 356:789-794.
  28. Sugarman et al. (2004). CFTR mutation distribution among U.S. Hispanic and African American individuals: Evaluation in cystic fibrosis patient and carrier screening populations. Genet Med, 6(5):392-399.
  29. Watson et al. (2004). Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel. Genet Med, 6(5):387-391.
  30. World Health Organization (WHO) (2002). The Molecular Genetic Epidemiology of Cystic Fibrosis. Report of a joint meeting of WHO/ECFTN/ICF(M)A/ECFS.
28
Preparent Carrier Screen - SMA
  1. Cusin et al. (2003). Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counseling. J Med Genet, 40:e39.
  2. Dressman et al. (2007). X-linked infantile spinal muscular atrophy: clinical definition and molecular mapping. Genet Med, 9(1):52-60.
  3. Guenther er al. (2007). Clinical and mutational profile in spinal muscular atrophy with respiratory distress (SMARD): defining novel phenotypes through hierarchical cluster analysis. Hum Mutat, 28(8):808-815.
  4. Hendrickson et al. (2009). Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet, 46(9): 641-644.
  5. Iannaccone et al (2004). Spinal muscular atrophy. Curr Neurol Neurosci Rep, 4(1):74-80.
  6. Kaindl et al. (2008). Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J Child Neurol, 3(2):199-204.
  7. Kolb et al. (2007). Molecular functions of the SMN complex. J Child Neurol, 22(8):990-994.
  8. Lefebvre et al. (1995). Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene. Cell, 80:155-165.
  9. Lunn and Wang (2008). Spinal Muscular Atrophy. Lancet, 371: 2120:2133.
  10. Mailman et al. (2002). Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med, 4(1):20-26.
  11. Marques et al. (2006). Expanding the phenotypes of the Pro56Ser VAPB mutation: proximal SMA with dysautonomia. Muscle Nerve, 34(6):731-739.
  12. Monani (2005). Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 48(6):885-896.
  13. Nishimura et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet, 75(5):822-831.
  14. Ogino and Wilson (2002). Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum Genet, 111(6):477-500.
  15. Ogino and Wilson (2004). Spinal muscular atrophy: molecular genetics and diagnostics. Expert Rev Mol Diagn, 4(1): 15-29.
  16. Prior et al. (2004). Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A, 130(3):307-310.
  17. Prior (2007). Spinal muscular atrophy diagnostics. J Child Neurol, 22(8):952-956.
  18. Prior (2008). Carrier screening for spinal muscular atrophy. Genet Med, 10:840-842.
  19. Ramser et al. (2008). Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet, 82(1):188-193.
  20. Smith et al. (2007). Population screening and cascade testing for carriers of SMA. Eur J Hum Genet, 15: 759-766.
  21. Swoboda et al. (2005). Natural History of Denervation in SMA: Relation to Age, SMN2 Copy Number, and Function. Ann Neurology, 57(5) 704-712.
  22. Sumner (2007). Molecular mechanisms of spinal muscular atrophy. J Child Neurol, (8):979-989.
  23. Wirth et al (2006). Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet, 119(4):422-428.
36
Preparent Carrier Screen - Fragile X syndrome
  1. Chen et al. (2010). An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for Southern blot analysis. J Mol Diagn, 12:589-600.
  2. Cornish et al. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: a developmental neuropsychological approach. J Child Psychol Psychiatry, 45(6):1042-1053.
  3. Cronister et al. (2008). Prevalence and instability of fragile X alleles: implications for offering fragile X prenatal diagnosis. Obstet Gynecol, 111:596-601.
  4. Eichler et al. (1994). Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet, 8:88-94.
  5. Fernandez-Carvajal et al. (2009). Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J Mol Diagn, 11:306-1310.
  6. Hagerman et al. (2002). Fragile X syndrome : Diagnosis, treatment, and research; 3rd ed.; Baltimore : Johns Hopkins University Press.
  7. Hagerman and Hagerman (2004). The fragile-X premutation: a maturing perspective. Am J Hum Genet, 74(5):805-16. Epub 2004 Mar 29. Review. Erratum in: Am J Hum Genet. 2004 Aug;75(2):352.
  8. Hagerman (2006). Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr, 27(1):63-74.
  9. Hantash et al. (2011). FMR1 premutation carrier frequency in patients undergoing routine population-based carrier screening: insights into the prevalence of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in the United States. Genet Med, 13:39-45.
  10. Jacquemont et al. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol, 6(1):45-55.
  11. Koukoui and Chaudhuri (2007). Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome. Brain Res Rev, 53(1):27-38.
  12. Nolin et al. (2003). Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. J Hum Genet, 2003, 72:454-464.
  13. Sherman et al. (2005). Fragile X syndrome: diagnostic and carrier testing. Genet Med, 7(8):584-587.
  14. Strom et al. (2007). Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med, 9:46-51.
  15. Terracciano et al. (2005). Fragile X syndrome. Am J Med Genet C Semin Med Genet, 15;137(1):32-37.
  16. Van Esch (2006). The Fragile X premutation: new insights and clinical consequences. Eur J Med Genet, 49(1):1-8.
  17. Willemsen et al. (2004). The fragile X syndrome: from molecular genetics to neurobiology. Ment Retard Dev Disabil Res Rev, 10(1):60-67.
24
Preparent Carrier Screen - Ashkenazi Jewish Panel
  1. Ambrus A et al. (2009). Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. J. Neurochem. 109 Suppl (1):222-229.
  2. Cerna et al. (2001). Novel mutations in a boy with dihydrolipoamide dehydrogenase deficiency. Med Sci Monit, 7(6):1319-1325.
  3. Feigenbaum and Robinson (1993). The structure of the human dihydrolipoamide dehydrogenase gene (DLD) and its upstream elements. Genomics, 17(2):376-381.
  4. Matalon R et al. (1984). Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid. J. Pediatr. 104(1):65-69.
  5. Sansaricq C et al. (2006). Biochemical and molecular diagnosis of lipoamide dehydrogenase deficiency in a North American Ashkenazi Jewish family. J. Inherit. Metab. Dis. 29(1):203-204.
  6. Scott SA et al. (2010). Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Hum. Mutat. 31(11):1240-1250.
  7. Shaag et al. (1999). Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet. 82(2):177-182.
  8. Chou et al. (2010). Neutropenia in type 1b glycogen storage disease. Curr Opin Hematol, 17(1):36-42.
  9. Chou et al. (2008). Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen storage disease. Hum Mutat, 29(7):921-930.
  10. Ekstein et al. (2004). Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am J Med Genet, 129A(2):162-164.
  11. Matern et al. (2002). Glycogen storage disease type I: diagnosis and phenotype/genotype correlation. Eur J Pediatr, 161 Suppl 1:S10-S19.
  12. Melis et al. (2005). Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr, 164(8):501-508.
  13. Parvari et al. (1997). Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies. Am. J. Med. Genet , 72: 286-290.
  14. Chuang DT, Chuang JL, Wynn RM. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006 Jan;136(1 Suppl):243S-9S.
  15. Love-Gregory, LD et al. (2002) Molec Genet Metab 75:1,2002
  16. Mitsubuchi H, Owada M, Endo F. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J Nutr. 2005 Jun;135(6 Suppl):1565S-70S.
  17. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002 Jun;109(6):999-1008.
  18. Puffenberger EG. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet. 2003 Aug 15;121C(1):18-31.
  19. Simon E, Flaschker N, Schadewaldt P, Langenbeck U, Wendel U. Variant maple syrup urine disease (MSUD)--the entire spectrum. J Inherit Metab Dis. 2006 Dec;29(6):716-24. Epub 2006 Oct 25.
  20. Huopio et al. (2002). K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab, 283(2):E207-E216.
  21. James et al. (2009). The genetic basis of congenital hyperinsulinism. J Med Gene, 46(5):289-299.
  22. Meissner et al. (2003). Long-term follow-up of 114 patients with congenital hyperinsulinism. Eur J Endocrinol, 149(1):43-51.
  23. Nestorowicz et al. (1996). Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet, 5(11): 1813-1822.
  24. Pinney et al. (2008). Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest, 118(8):2877-2886.
  25. Sandal et al. (2009). The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy. Clin Genet, 75(5):440-448.
  26. Chuang DT, Chuang JL, Wynn RM. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006 Jan;136(1 Suppl):243S-9S.
  27. Love-Gregory, LD et al. (2002) Molec Genet Metab 75:1,2002
  28. Mitsubuchi H, Owada M, Endo F. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J Nutr. 2005 Jun;135(6 Suppl):1565S-70S.
  29. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002 Jun;109(6):999-1008.
  30. Puffenberger EG. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet. 2003 Aug 15;121C(1):18-31.
  31. Simon E, Flaschker N, Schadewaldt P, Langenbeck U, Wendel U. Variant maple syrup urine disease (MSUD)--the entire spectrum. J Inherit Metab Dis. 2006 Dec;29(6):716-24. Epub 2006 Oct 25.
  32. Beltran-Valero et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet, 71 (5):1033-1043.
  33. Chung et al. (2009). Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn, 29:560-569.
  34. Cotarelo et al. (2008). Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg Syndrome. Clin Genet, 73:139-145.
  35. Vajsar and Schachter (2006). Walker-Warburg syndrome. Orphanet Journal of Rare Diseases, 1:29-29.
  36. Walker (1942). Lissencephaly. Archives of Neurology and Psychiatry, 48: 13-29.
  37. Warburg (1971). The heterogeneity of microphthalmia in the mentally retarded. Birth Defects Orig Artic Ser, 7(3):136-154.
  38. Edvardson et al. (2010). Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am J Hum Genet, 86:93-97.
  39. Brancati et al. (2010). Joubert Syndrome and related disorders. Orphanet J Rare Dis, 8 (5): 20-29.
  40. Doherty (2009). Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol, 16(3):143-154.
  41. Maria BL et al. (1999). Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol, 14(6):368-376.
  42. Parisi (2009). Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet, 15;151C(4):326-340.
  43. Valente et al (2008). Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet, 51(1):1-23.
  44. Anderson et al. (2004). Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet, 115: 185-190.
  45. Ilkovski et al. (2005). Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord, 15(12):829-835.
  46. Lehtokari et al. (2006). Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat, 27(9):946-56.
  47. Nowak et al. (2007). Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol, 61(2):175-184.
  48. Ottenheijm et al. (2010). Altered myofilament function depresses force generation in patients with nebulin-based nemaline myopathy (NEM2). J Struct Biol, 170(2):334-343.
  49. Ryan et al. (2001). Nemaline myopathy: a clinical study of 143 cases. Ann Neurol, 50(3):312-320.
  50. Wallefeld et al. (2006). Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord, 16(9-10):541-547.
  51. Youssef et al. (2009). Nemaline myopathy: clinical, histochemical and immunohistochemical features. Arq Neuropsiquiatr, 67(3B):886-891.
  52. Adato et al. (2002). USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur J Hum Genet, 10(6):339-350.
  53. Ahmed et al (2003). The molecular genetics of Usher syndrome. Clin Genet, 63(6):431-444.
  54. Astuto et al. (2000). Genetic heterogeneity of Usher syndrome: analysis of 151 families with Usher type I. Am J Hum Genet, 67(6):1569-1574.
  55. Ben-Yosef et al. (2001). A mutation of PCDH15 among Ashkenazi Jews with the type 1 Usher syndrome. NEJM, 348: 1664-1670.
  56. Boeda et al. (2002). Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J, 21(24):6689-6699.
  57. Eudy and Sumegi (1999). Molecular genetics of Usher syndrome. Cell Mol Life Sci, 15;56(3-4):258-267.
  58. Friedman et al. (2005). Usher syndrome type 1: genotype-phenotype relationships. Retina, 25(8 Suppl):S40-S42.
  59. Hmani-Aifa et al. (2002). Distinctive audiometric features between USH2A and USH2B subtypes of Usher syndrome. J Med Genet, 39(4):281-283.
  60. Keats and Savas (2004). Genetic heterogeneity in Usher syndrome. Am J Med Genet A, 130(1):13-16.
  61. Leroy et al (2001). Spectrum of mutations in USH2A in British patients with Usher syndrome type II. Exp Eye Res, 72(5):503-509.
  62. Ness et al. (2003). Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet, 40: 767-772.
  63. Pennings et al. (2003). Usher syndrome type III can mimic other types of Usher syndrome. Ann Otol Rhinol Laryngol 112(6):525-530.
  64. Petit C (2001). Usher syndrome: from genetics to pathogenesis. Annu Rev Genomics Hum Genet, 2:271-297.
  65. Reiners et al (2006). Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res, 83(1):97-119.
  66. Reisser et al (2002). Hearing loss in Usher syndrome type II is nonprogressive. Ann Otol Rhinol Laryngol, 111(12 Pt 1):1108-1111.
  67. Seeliger et al (1999). Comparative study of visual, auditory, and olfactory function in Usher syndrome. Graefes Arch Clin Exp Ophthalmol, 237(4):301-307.
  68. Weston et al. (2000). Genomic structure and identification of novel mutations in usherin, the gene responsible for Usher syndrome type IIa. Am J Hum Genet, 66(4):1199-1210.
  69. Committee on Genetics, American College of Obstetricians and Gynecologists (2009). Preconception and prenatal carrier screening for genetic diseases in individuals of Eastern European Jewish descent. Obstetrics and Gynecology, 114(4): 950-953.
  70. Committee on Genetics, American College of Obstetricians and Gynecologists (2005, reaffirmed 2007). Screening for Tay-Sachs disease. Obstetrics and Gynecology, 106(4):893-894.
  71. Cunningham, et al (2010). Prenatal diagnosis and fetal therapy. In Williams Obstetrics, 23rd ed, New York: McGraw-Hill Medical; chap 13:287-311.
  72. Gross, (2008). Carrier screening individuals of Ashkenazi Jewish descent. Genet Med, 10(1):54-56.
  73. Monaghan, et al (2008). Technical standards and guidelines for reproductive screening in the Ashkenazi Jewish population. Genet Med, 10(1):57-72.
  74. Schneider, et al (2009). Population-based Tay-Sachs screening among Ashkenazi Jewish young adults in the 21st Century: Hexosaminidase A enzyme assay is essential for accurate testing. Am J Med Genet, Part A 149A:2444-2447.
  75. Scott, et al (2010). Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Human Mutation, 31(11): 1240-1250.
  76. Myerowitz, R. (1997). Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation 9:195-208.
  77. Gravel, et al (2001). The GM2 gangliosidosis. In The Metabolic and Molecular Bases of Inherited Disease. 8th edition. New York, McGraw-Hill Book Company, pp 3827-3876.
  78. Kaback (2000). Population-based genetics screening for reproductive counseling: the Tay-Sachs experience. Eur J Pediatr, 159:192-195.
  79. Kaback, et al (1993). Tay-Sachs Disease-- Carrier Screening, Prenatal Diagnosis, and the Molecular Era: An International Perspective, 1970 to 1993. JAMA, 270:2307-2315.
  80. Sutton (2002). Tay-Sachs disease screening and counseling families at risk for metabolic disease. Obstet Gynecol Clin North Am, 29(2):287-296.
156
Factor II Prothrombin
  1. American College of Obstetricians and Gynecologists. Practice Bulletin No.138: Inherited thrombophilias in pregnancy. 2013.
  2. Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO; American College of Chest Physicians. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. 2012.
  3. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: routine testing for Factor V Leiden (R506Q) and prothrombin (20210G>A) mutations in adults with a history of idiopathic VTE and their adult family members. 2011.
  4. National Clinical Guideline Centre. Venous Thromboembolic Diseases: The Management of Venous Thromboembolic Diseases and the Role of Thrombophilia Testing. National Institute for Health and Care Excellence Clinical Guidelines. 2012.
157
Factor V Leiden Thrombophilia
  1. Thrombophilia, Online Mendelian Inheritance in Man (OMIM).
  2. Calderwood CJ, Greer IA; The role of factor V Leiden in maternal health and the outcome of pregnancy. Curr Drug Targets. 2005 Aug;6(5):567-76.
  3. Ehrenforth S, Nemes L, Mannhalter C, et al; Impact of environmental and hereditary risk factors on the clinical manifestation of thrombophilia in homozygous carriers of factor V:G1691A. J Thromb Haemot. 2004 Mar; 2(3):430-6.